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Transformation of a carbene from a divalent to a tetravalent

species is generally a highly exothermic process for which
numerous pathways have been obsefivedrticularly interesting
examples are two-bongicleavages, such as that of cyclopropyl-
methylenesl to an alkene and an alkyhand the cleavage of
2,5-dioxacyclopentyliden2ato CO, and an alkenéln the latter
reaction, the stability of C@provides a thermodynamic driving

he

force. We now report that the parent cyclopentylideig, will
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excess energy in the C-atom reaction is responsible for the
observed cleavage.
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To investigate the energy surfaces connectigwith the
observed products, we have carried out a computational study in
which geometries were optimized and energies calculated at the
B3LYP/6-31H-G(d)+ZPC level’® Table 1 shows energies of
relevant species relative to the ground state 2bf Since
deoxygenation of carbonyl compounds by carbon occurs along a
singlet energy surfacewe have focused our calculations on
singlet species. Carberd was found to have a singlet ground
state with an ST splitting of 8.7 kcal/mol. Not surprisingly, the
most favorable reaction &b was H migration to4 which has a

undergo an analogous cleavage when generated with sufficientbarrier of only 5.7 kcal/mol and is exothermic by 63.0 kcal/mol.

excess energy.

The deoxygenation of carbonyl compounds by atomic carbon,

which is generally exothermic by over 100 kcal/mol, is a
convenient route to carbenes which possess excess eféegy
the carbon atom deoxygenation of cyclopentan8nis expected
to generate highly energetb. Co-condensation of arc-generated
carbort with 3 at 77 K leads to cyclopenteng, allene,5, and
ethylene,6, in a 4:1:1 ratio (eq 1). These results raise the
possibility that the high exothermicity of the deoxygenation
generates2b with enough energy to cleave t6 and 6 in
competition with rearrangement o While it is conceivable that
the cleavage products arise from chemically activdtetbne of
the reported thermal or photochemical decompositiorssiiiow
this type of fragmentatiof.

Since we observe that generation2tffrom diazo compound
7 by pyrolysis of tosylhydrazone lithium s&tat 180°C gives

Several other intramolecular reactions including ring contraction
to methylenecyclobutan® (AH* = 51.0 kcal/mol) ang3 C—H
insertion to give bicyclo[2.1.0]pentari® (AH* = 27.5 kcal/mol)
were calculated to have high barriers and seem unlikely to play
a role in the chemistry o2b.

In examining the energy surface leading fr@mto 5 and6,
a reaction calculated to be exothermic by 23.2 kcal/mol, it is
immediately obvious that a concerted cleavage preservinGthe
symmetry of2b would lead to a planar allene and thus be a high-
energy process. Indeed, such a structure can be located lying 56.1
kcal/mol in energy abov@b with two negative eigenvectors. A
similar problem does not occur in the concerted cleavageaof
in which a calculated barrier of 1& 1 kcal/mol has been
reported®®1° Since a careful search of the closed-shell surface
connecting2b with 5 and6 fails to reveal a low-energy concerted
transition state, we have considered the possibility that the reaction

4 as the only detectable carbene product, it seems likely that theproceeds in a stepwise manner via biradital
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Table 1. Relative Energies (kcal/mol)

B3LYP/

CAS-PT2//B3LYP/

species 6-3114+-G(d) +zPC
2b 0.0 0.0
4 —65.2 —63.0
(5+6) —-18.6 —23.2
9 —44.9 —44.0
10 —33.9 -32.1
concerted TS 62.5 56.1
TS2b/4 6.8 5.7
TS2b/9 52.0 51.0
TS2b/10 28.2 27.5
32b 7.7 8.7
2b* 185 19.4
11 22.4 18.9
TS2b/11 38.6 36.0

An estimate of the energy dfL from 1-pentene using the vinyl
and methyl BDEs places it 23 kcal/mol ab®kin energy. Single
point CAS-PT2 calculatio$? using B3LYP/6-313%G(d)
geometries placdl 20.1 kcal/mol aboveb in energy. These
data indicate that whe?b is generated by conventional methods
of carbene synthesis its cleavage via biradichls unfavorable
by at least 26-23 kcal/mol and will not be competitive with H
migration to give4 (AH* = 5.7 kcal/mol).

Since we have demonstrated that excited sing®t) (meth-
ylene is generated in the C-atom deoxygenation of formaldehyde
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3,4-dideuteriocyclopentanottewith C atoms at 77 K gives cis
andtrans-1,2-dideuterioethylene in a 3:1 ratio as determined by
IR spectroscopy? When the reaction is carried out in the gas
phase with C atoms generated by the 8D thermolysis of
diazotetrazolé® a 1:1 ratio of cis antrans-1,2-dideuterioethylene

is produced. These results are consistent with the predicted two-
step cleavage oRb in which rotation about the -34 bond
competes with rupture of the second bond in biradicaid,. A
further indication that excited species are involved in the formation
of 5andé6 is the fact that adding 200 Torr of;No the gas-phase
reaction reduces the yield &fto only a trace?
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While these experimental and computational results are con-
sistent with the intermediacy of excited singk#, they do not
require it. However, it is clear that the excess energy available to
the carbene generated by the C-atom deoxygenation brings about
the cleavage reaction. These data raise the interesting possibility
that carbenes generated by highly exothermic pathways may
undergo a set of reactions characteristic of the singlet excited
state. We are continuing to explore this possibility which may
open a new dimension in carbene chemistry.
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state of2b (2b*) is involved in the present deoxygenation. A
CAS-PT2 calculatio** using B3LYP/6-313%G(d) geometries
gives an $—S, separation ir2b of 37.5 kcal/moR? These results
indicate that the exothermicity of formation @b by C-atom
deoxygenation (108 kcal/mol) could be channeled into the
production of2b* in which cleavage td.1is thermodynamically
feasible. A single point CAS-PT2 calculation places the transition
state connectin@b and11 0.7 kcal/mol higher in energy than

2b*.

To test for the predicted lack of concert in the cleavag2inf
we have investigated the stereochemistry of the cleavages-of
3,4-dideuteriocyclopentyliden@gc. Thus, deoxygenation dfis-
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